Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.241
Filtrar
1.
J Neurosurg ; 140(4): 1129-1136, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564812

RESUMO

OBJECTIVE: Stereoelectroencephalography (SEEG)-guided radiofrequency thermocoagulation (RFTC) has the advantage of producing a lesion in the epileptogenic zone (EZ) at the end of SEEG. The majority of published SEEG-guided RFTCs have been bipolar and usually performed between contiguous contacts of the same electrode. In the present study, the authors evaluate the safety, efficacy, and benefits of monopolar RFTC at the end of SEEG. METHODS: This study included a series of 31 consecutive patients who had undergone RFTC at the end of SEEG for drug-resistant focal epilepsy in the period of January 2013-December 2019. Post-RFTC seizure control was assessed after 2 months and at the last follow-up visit. Twenty-one patients underwent resective epilepsy surgery after the SEEG-guided RFTC, and the postoperative seizure outcome among these patients was compared with the post-RFTC seizure outcome. RESULTS: Four hundred forty-six monopolar RFTCs were done in the 31 patients. Monopolar RFTCs were performed in all cortical areas, including the insular cortex in 11 patients (56 insular RFTCs). There were 31 noncontiguous lesions (7.0%) because of vascular constraints. The volume of one monopolar RFTC, as measured on T2-weighted MRI immediately after the procedure, was between 44 and 56 mm3 (mean 50 mm3). The 2-month post-RFTC seizure outcomes were as follows: seizure freedom in 13 patients (41.9%), ≥ 50% reduced seizure frequency in 11 (35.5%), and no significant change in 7 (22.6%). Seizure outcome at the last follow-up visit (mean 18 months, range 2-54 months) showed seizure freedom in 2 patients (6.5%) and ≥ 50% reduced seizure frequency in 20 patients (64.5%). Seizure freedom after monopolar RFTC was not significantly associated with the number or location of coagulated contacts. Seizure response after monopolar RFTC had a high positive predictive value (93.8%) but a low negative predictive value (40%) for seizure outcome after subsequent resective surgery. In this series, the only complication (3.2%) was a limited intraventricular hematoma following RFTC performed in the hippocampal head, with spontaneous resolution and no sequelae. CONCLUSIONS: The use of monopolar SEEG-guided RFTC provides more freedom in terms of choosing the SEEG contacts for thermocoagulation and a larger thermolesion volume. Monopolar thermocoagulation seems particularly beneficial in cases with an insular EZ, in which vascular constraints could be partially avoided by making noncontiguous lesions within the EZ.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Resultado do Tratamento , Eletroencefalografia/métodos , Epilepsia/cirurgia , Convulsões/etiologia , Técnicas Estereotáxicas/efeitos adversos , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Eletrocoagulação/métodos , Imageamento por Ressonância Magnética/efeitos adversos , Estudos Retrospectivos
2.
Commun Biol ; 7(1): 405, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570628

RESUMO

Neuronal oscillations are commonly analyzed with power spectral methods that quantify signal amplitude, but not rhythmicity or 'oscillatoriness' per se. Here we introduce a new approach, the phase-autocorrelation function (pACF), for the direct quantification of rhythmicity. We applied pACF to human intracerebral stereoelectroencephalography (SEEG) and magnetoencephalography (MEG) data and uncovered a spectrally and anatomically fine-grained cortical architecture in the rhythmicity of single- and multi-frequency neuronal oscillations. Evidencing the functional significance of rhythmicity, we found it to be a prerequisite for long-range synchronization in resting-state networks and to be dynamically modulated during event-related processing. We also extended the pACF approach to measure 'burstiness' of oscillatory processes and characterized regions with stable and bursty oscillations. These findings show that rhythmicity is double-dissociable from amplitude and constitutes a functionally relevant and dynamic characteristic of neuronal oscillations.


Assuntos
Magnetoencefalografia , Periodicidade , Humanos , Magnetoencefalografia/métodos , Neurônios/fisiologia , Técnicas Estereotáxicas , Atenção/fisiologia
3.
Childs Nerv Syst ; 40(5): 1331-1337, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38451299

RESUMO

PURPOSE: Stereoelectroencephalography (SEEG) is a diagnostic surgery that implants electrodes to identify areas of epileptic onset in patients with drug-resistant epilepsy (DRE). SEEG is effective in identifying the epileptic zone; however, placement of electrodes in very young children has been considered contraindicated due to skull thinness. The goal of this study was to evaluate if SEEG is safe and accurate in young children with thin skulls. METHODS: Four children under the age of two years old with DRE underwent SEEG to locate the region of seizure onset. Presurgical planning and placement of electrodes were performed using ROSA One Brain. Preoperative electrode plans were merged with postoperative CT scans to determine accuracy. Euclidean distance between the planned and actual trajectories was calculated using a 3D coordinate system at both the entry and target points for each electrode. RESULTS: Sixty-three electrodes were placed among four patients. Mean skull thickness at electrode entry sites was 2.34 mm. The mean difference between the planned and actual entry points was 1.12 mm, and the mean difference between the planned and actual target points was 1.73 mm. No significant correlation was observed between planned and actual target points and skull thickness (Pearson R = - 0.170). No perioperative or postoperative complications were observed. CONCLUSIONS: This study demonstrates that SEEG can be safe and accurate in children under two years of age despite thin skulls. SEEG should be considered for young children with DRE, and age and skull thickness are not definite contraindications to the surgery.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Criança , Humanos , Lactente , Pré-Escolar , Estudos de Viabilidade , Eletroencefalografia , Eletrodos Implantados , Técnicas Estereotáxicas , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia/cirurgia , Estudos Retrospectivos
4.
Acta Neurochir (Wien) ; 166(1): 147, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520537

RESUMO

OBJECTIVE: Lesions of the posterior fossa (brainstem and cerebellum) are challenging in diagnosis and treatment due to the fact that they are often located eloquently and total resection is rarely possible. Therefore, frame-based stereotactic biopsies are commonly used to asservate tissue for neuropathological diagnosis and further treatment determination. The aim of our study was to assess the safety and diagnostic success rate of frame-based stereotactic biopsies for lesions in the posterior fossa via the suboccipital-transcerebellar approach. METHODS: We performed a retrospective database analysis of all frame-based stereotactic biopsy cases at our institution since 2007. The aim was to identify all surgical cases for infratentorial lesion biopsies via the suboccipital-transcerebellar approach. We collected clinical data regarding outcomes, complications, diagnostic success, radiological appearances, and stereotactic trajectories. RESULTS: A total of n = 79 cases of stereotactic biopsies for posterior fossa lesions via the suboccipital-transcerebellar approach (41 female and 38 male) utilizing the Zamorano-Duchovny stereotactic system were identified. The mean age at the time of surgery was 42.5 years (± 23.3; range, 1-87 years). All patients were operated with intraoperative stereotactic imaging (n = 62 MRI, n = 17 CT). The absolute diagnostic success rate was 87.3%. The most common diagnoses were glioma, lymphoma, and inflammatory disease. The overall complication rate was 8.7% (seven cases). All patients with complications showed new neurological deficits; of those, three were permanent. Hemorrhage was detected in five of the cases having complications. The 30-day mortality rate was 7.6%, and 1-year survival rate was 70%. CONCLUSIONS: Our data suggests that frame-based stereotactic biopsies with the Zamorano-Duchovny stereotactic system via the suboccipital-transcerebellar approach are safe and reliable for infratentorial lesions bearing a high diagnostic yield and an acceptable complication rate. Further research should focus on the planning of safe trajectories and a careful case selection with the goal of minimizing complications and maximizing diagnostic success.


Assuntos
Neoplasias Encefálicas , Técnicas Estereotáxicas , Humanos , Masculino , Feminino , Adulto , Estudos Retrospectivos , Tronco Encefálico/cirurgia , Cerebelo/cirurgia , Biópsia/métodos , Neoplasias Encefálicas/cirurgia
5.
World Neurosurg ; 184: e408-e416, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309654

RESUMO

OBJECTIVE: To analyze the relationship between trajectory-skull angle and stereoelectroencephalography electrode implantation accuracy in drug-resistant epilepsy patients, aiming to guide clinical electrode placement and enhance surgical precision and safety. METHODS: We conducted a retrospective analysis of medical records and surgical characteristics of 32 consecutive patients diagnosed with drug-resistant epilepsy, who underwent stereoelectroencephalography procedures at our center from June 2020 to June 2023. To evaluate the accuracy of electrode implantation, we utilized preoperative and postoperative computed tomography scans fused with SinoPlan software-planned trajectories. Entry radial error and target vector error were assessed as measurements of electrode implantation accuracy. RESULTS: After adjusting for confounders, we found a significant positive correlation between trajectory-skull angle and entry radial error (ß = 0.02, 95% CI: 0.01-0.03, P < 0.001). Likewise, a significant positive correlation existed between trajectory-skull angle and target vector error in all three models (ß = 0.03, 95% CI: 0.01-0.04, P < 0.001). Additionally, a U-shaped relationship between trajectory-skull angle and target vector error was identified using smooth curve fitting. This U-shaped pattern persisted in both frame-based and robot-guided stereotactic techniques. According to the two-piecewise linear regression model, the inflection points were 9° in the frame-based group and 16° in the robot-guided group. CONCLUSIONS: This study establishes a significant positive linear correlation between trajectory-skull angle and entry radial error, along with a distinctive U-shaped pattern in the relationship between trajectory-skull angle and target vector error. Our findings suggest that trajectory-skull angles of 9° (frame-based) and 16° (robot-guided) may optimize the accuracy of target vector error.


Assuntos
Epilepsia Resistente a Medicamentos , Eletroencefalografia , Humanos , Estudos Retrospectivos , Eletroencefalografia/métodos , Eletrodos Implantados , Técnicas Estereotáxicas , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Crânio
6.
World Neurosurg ; 184: e689-e694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346588

RESUMO

BACKGROUND: Stereotactic brain biopsy is a crucial minimally invasive surgical technique leveraged to obtain tissue specimens from deep-seated intracranial lesions, offering a safer alternative to open craniotomy for patients who cannot tolerate the latter. Despite its effectiveness, the diagnostic yield varies across different centers and has not been widely studied in Sub-Saharan Africa. METHODS: A single-center retrospective analysis was conducted on 67 consecutive stereotactic brain biopsy procedures carried out by experienced neurosurgeons between January 2012 and December 2022 at a tertiary center in Sub-Saharan Africa. Preoperative clinical status, biopsy type, postoperative complication rate, and histological diagnosis were meticulously analyzed. Factors associated with negative biopsy results were identified using IBM Statistical Package for the Social Sciences SPSS version for Mac, with Fisher exact test employed to detect differences in patient characteristics. Statistical significance was pegged at P < 0.05. RESULTS: The overall diagnostic yield rate was 67%. Major contributors to negative biopsy outcomes were superficial location of the lesion, lesion size less than 10 cc, and the use of the Cape Town Stereotactic System. Enhanced yield rates of up to 93% were realized through the application of magnetic resonance imaging-based images, Stealth Station 7, and frozen section analysis. No correlation was observed between the number of cores obtained and the yield rate. Procedure complications were negligible, and no procedure-related mortality was recorded. CONCLUSIONS: The diagnostic yield rate from our study was somewhat lower than previously reported in contemporary literature, primarily attributed to the differing definitions of diagnostic yield, the dominant use of the older framed Cape Town Stereotactic System, computed tomography-based imaging, and the absence of intraoperative frozen section. Nevertheless, biopsies conducted using the frameless system were comparable with studies from other global regions. Our findings reaffirm that stereotactic brain biopsy when complemented with magnetic resonance imaging-based imaging, frameless stereotactic systems and intraoperative frozen section is a safe, effective, and reliable method for obtaining histological diagnosis.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Técnicas Estereotáxicas , Estudos Retrospectivos , África do Sul , Biópsia/métodos , Imageamento por Ressonância Magnética , Secções Congeladas , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Encéfalo/patologia
7.
World Neurosurg ; 184: e754-e764, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350598

RESUMO

BACKGROUND: With continued evolution in stereotactic techniques and an expanding armamentarium of surgical therapeutic options, non-craniotomy stereotactic procedures in neuro-oncology are becoming increasingly complex, often requiring multi-trajectory approaches. Here we demonstrate that the ClearPoint SmartFrame Array (Solana Beach, California, USA), a second-generation magnetic resonance imaging-compatible stereotactic frame, supports such non-craniotomy, multi-trajectory (NCMT) stereotactic procedures. METHODS: We previously published case reports demonstrating the feasibility of NCMT through the ClearPoint SmartFrame Array. Here we prospectively followed the next 10 consecutive patients who underwent such multi-trajectory procedures to further establish procedural safety and clinical utility. RESULTS: Ten patients underwent complex, multi-trajectory stereotactic procedures, including combinations of needle biopsy ± cyst drainage and laser interstitial thermal therapy targeting geographically distinct regions of neoplastic lesions under the same anesthetic event. The median maximal radial error of stereotaxis was 1.0 mm. In all cases, definitive diagnosis was achieved, and >90% of the intended targets were ablated. The average stereotaxis time for the multi-trajectory procedure was 119 ± 22.2 minutes, comparing favorably to our previously published results of single-trajectory procedures (80 ± 9.59 minutes, P = 0.125). There were no procedural complications. Post-procedure, the neurologic condition of 1 patient improved, while the remaining 9 patients remained stable. All patients were discharged home, with a median hospital stay of 1 day (range: 1-12 days). With a median follow-up of 376 days (range: 155-1438 days), there were no 30-day readmissions or wound complications. CONCLUSIONS: Geographically distinct regions of brain cancer can be safely and accurately accessed through the ClearPoint Array frame in NCMT stereotactic procedures.


Assuntos
Neoplasias Encefálicas , Terapia a Laser , Humanos , Terapia a Laser/métodos , Técnicas Estereotáxicas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Procedimentos Neurocirúrgicos/métodos , Imageamento por Ressonância Magnética/métodos
8.
Epilepsy Behav ; 153: 109694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401416

RESUMO

OBJECTIVE: Negative MRI and an epileptogenic zone (EZ) adjacent to eloquent areas are two main issues that can be encountered during pre-surgical evaluation for epilepsy surgery. Focal Cortical Dysplasia type II (FCD type II) is the most common aetiology underlying a negative MRI. The objective of this study is to present three cases of pediatric patients exhibiting negative MRI and a seizure onset zone close to eloquent areas, who previously underwent traditional open surgery or SEEG-guided radiofrequency thermocoagulations (RF-TC). After seizure seizure recrudescence, pre-surgical SEEG was re-evaluated and Magnetic Resonance-guided laser interstitial thermal therapy (MRg-LiTT) was performed. We discuss the SEEG patterns, the planning of laser probes trajectories and the outcomes one year after the procedure. METHODS: Pediatric patients who underwent SEEG followed by MRg-LiTT for drug-resistant epilepsy associated with FCD type II at our Centre were included. Pre-surgical videoEEG (vEEG), stereoEEG (sEEG), and MRI were reviewed. Post-procedure clinical outcome (measured by Engel score) and complications rates were evaluated. RESULTS: Three patients underwent 3 MRg-LiTT procedures from January 2022 to June 2022. Epileptogenic zone was previously studied via SEEG in all the patients. All the three patients pre-surgical MRI was deemed negative. Mean age at seizure onset was 47 months (21-96 months), mean age at MRg-LiTT was 12 years (10 years 10 months - 12 years 9 months). Engel class Ia outcome was achieved in patients #2 and #3, Engel class Ib in patient #1. Mean follow-up length was of 17 months (13 months - 20 months). Complications occurred in one patient (patient #2, extradural hematoma). CONCLUSIONS: The combined use of SEEG and MRg-LiTT in complex cases can lead to good outcomes both as a rescue therapy after failed surgery, but also as an alternative to open surgery after a successful SEEG-guided Radiofrequency Thermocoagulation (RF-TC). Specific SEEG patterns and a previous good outcome from RF-TC can be predictors of a favourable outcome.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Malformações do Desenvolvimento Cortical do Grupo I , Humanos , Criança , Pré-Escolar , Técnicas Estereotáxicas , Eletroencefalografia/métodos , Resultado do Tratamento , Epilepsia/cirurgia , Imageamento por Ressonância Magnética/métodos , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Convulsões/diagnóstico por imagem , Convulsões/etiologia , Convulsões/cirurgia , Espectroscopia de Ressonância Magnética , Estudos Retrospectivos
9.
10.
Acta Neurochir (Wien) ; 166(1): 85, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38361129

RESUMO

BACKGROUND: Stereoelectroencephalography (SEEG) is an effective presurgical invasive evaluation for drug-resistant epilepsies. The introduction of robotic devices provides a simplified, accurate, and safe alternative to the conventional SEEG technique. We report our institutional experience with robot-assisted SEEG and compare its in vivo accuracy, operation efficiency, and safety with the more traditional SEEG workflow. METHODS: All patients with medically refractory focal epilepsy who underwent SEEG depth electrode implantation between 2014 and 2022 were included in this study. Technical advancements of the robot-assisted technique are described. Analyses of patient demographics, electrode implantation accuracy, operation time, and procedure-related complications were performed. RESULTS: One hundred and sixty-six patients underwent 167 SEEG procedures. The first 141 procedures were performed using a conventional approach involving a Leksell stereotactic system, and the last 26 procedures were robot-assisted. Among the 1726 depth electrodes that were inserted, the median entry point localization error was as follows: conventional (1.0 mm; range, 0.1-33.5 mm) and robot-assisted (1.1 mm; range, 0-4.8 mm) (P = 0.17). The median target point localization error was as follows: conventional (2.8 mm; range, 0.1-49 mm) and robot-assisted (1.8 mm; range, 0-30.3 mm) (P < 0.001). The median operation time was significantly reduced with the robot-assisted workflow (90 min vs. 77.5 min; P < 0.01). Total complication rates were as follows: conventional (17.7%) and robot-assisted (11.5%) (P = 0.57). Major complication rates were 3.5% and 7.7% (P = 0.77), respectively. CONCLUSIONS: SEEG is a safe and highly accurate method that provides essential guidance for epilepsy surgery. Implementing SEEG in conjunction with multimodal planning systems and robotic devices can further increase safety margin, surgical efficiency, and accuracy.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Robótica , Humanos , Eletroencefalografia/métodos , Eletrodos Implantados , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia/cirurgia , Técnicas Estereotáxicas
11.
Artigo em Russo | MEDLINE | ID: mdl-38334728

RESUMO

Robot-assisted implantation of deep electrodes for stereo-EEG monitoring has become popular in recent years in patients with drug-resistant epilepsy. However, there are still few data on safety of this technique. OBJECTIVE: To assess the incidence of complications in patients with drug-resistant epilepsy undergoing robot-assisted implantation of stereo-EEG electrodes. MATERIAL AND METHODS: We retrospectively studied the results of implantation of stereo-EEG electrodes in 187 patients with drug-resistant epilepsy. All patients underwent non-invasive preoperative examination (video-EEG, MRI, PET, SPECT, MEG). In case of insufficient data, stereo-EEG monitoring was prescribed. We determined electrode insertion trajectory using a robotic station and MR images. Implantation of electrodes was carried out using a Rosa robot (Medtech, France). All patients underwent invasive EEG monitoring after implantation. RESULTS: There were 11.25±3 electrodes per a patient. Implantation of one electrode took 7.5±4.9 min. Postoperative MRI revealed electrode malposition in 2.3% of cases. None was associated with complications. The complication rate per electrode was 0.6%. Complications affected stereo-EEG monitoring only in 3 cases (1.6%). The mortality rate was 0.5%. Bilateral implantation (p=0.005), insular (p=0.040) and occipital (p=0.045) deep electrode implantation were associated with lower incidence of complications. Longer duration of the procedure influenced the incidence of electrode placement in the lateral ventricle (p=0.028), and implantation in the frontal lobe was more often associated with epidural placement of electrodes (p=0.039). CONCLUSION: Robot-assisted implantation of stereo-EEG electrodes is a safe procedure with minimal risk of complications. Rare electrode malposition does not usually affect invasive monitoring.


Assuntos
Epilepsia Resistente a Medicamentos , Robótica , Humanos , Técnicas Estereotáxicas , Estudos Retrospectivos , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia/efeitos adversos , Eletroencefalografia/métodos , Eletrodos Implantados/efeitos adversos
13.
Sci Rep ; 14(1): 4071, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374380

RESUMO

Stereoelectroencephalography is a powerful intracerebral EEG recording method for the presurgical evaluation of epilepsy. It consists in implanting depth electrodes in the patient's brain to record electrical activity and map the epileptogenic zone, which should be resected to render the patient seizure-free. Stereoelectroencephalography has high spatial accuracy and signal-to-noise ratio but remains limited in the coverage of the explored brain regions. Thus, the implantation might provide a suboptimal sampling of epileptogenic regions. We investigate the potential of improving a suboptimal stereoelectroencephalography recording by performing source localization on stereoelectroencephalography signals. We propose combining independent component analysis, connectivity measures to identify components of interest, and distributed source modelling. This approach was tested on two patients with two implantations each, the first failing to characterize the epileptogenic zone and the second giving a better diagnosis. We demonstrate that ictal and interictal source localization performed on the first stereoelectroencephalography recordings matches the findings of the second stereo-EEG exploration. Our findings suggest that independent component analysis followed by source localization on the topographies of interest is a promising method for retrieving the epileptogenic zone in case of suboptimal implantation.


Assuntos
Epilepsia , Humanos , Epilepsia/diagnóstico , Epilepsia/cirurgia , Técnicas Estereotáxicas , Eletroencefalografia/métodos , Encéfalo , Eletrodos Implantados
14.
Clin Neurophysiol ; 158: 103-113, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38218076

RESUMO

OBJECTIVE: We aimed to develop a new approach for identifying the localization of the seizure onset zone (SOZ) based on corticocortical evoked potentials (CCEPs) and to compare the connectivity patterns in patients with different clinical phenotypes. METHODS: Fifty patients who underwent stereoelectroencephalography and CCEP procedures were included. Logistic regression was used in the model, and six CCEP metrics were input as features: root mean square of the first peak (N1RMS) and second peak (N2RMS), peak latency, onset latency, width duration, and area. RESULTS: The area under the curve (AUC) for localizing the SOZ ranged from 0.88 to 0.93. The N1RMS values in the hippocampus sclerosis (HS) group were greater than that of the focal cortical dysplasia (FCD) IIa group (p < 0.001), independent of the distance between the recorded and stimulated sites. The sensitivity of localization was higher in the seizure-free group than in the non-seizure-free group (p = 0.036). CONCLUSIONS: This new method can be used to predict the SOZ localization in various focal epilepsy phenotypes. SIGNIFICANCE: This study proposed a machine-learning approach for localizing the SOZ. Moreover, we examined how clinical phenotypes impact large-scale abnormality of the epileptogenic networks.


Assuntos
Eletroencefalografia , Epilepsias Parciais , Humanos , Eletroencefalografia/métodos , Epilepsias Parciais/diagnóstico , Potenciais Evocados/fisiologia , Técnicas Estereotáxicas , Convulsões
15.
Phys Life Rev ; 48: 132-161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219370

RESUMO

This survey provides a comprehensive insight into the world of non-invasive brain stimulation and focuses on the evolving landscape of deep brain stimulation through microwave research. Non-invasive brain stimulation techniques provide new prospects for comprehending and treating neurological disorders. We investigate the methods shaping the future of deep brain stimulation, emphasizing the role of microwave technology in this transformative journey. Specifically, we explore antenna structures and optimization strategies to enhance the efficiency of high-frequency microwave stimulation. These advancements can potentially revolutionize the field by providing a safer and more precise means of modulating neural activity. Furthermore, we address the challenges that researchers currently face in the realm of microwave brain stimulation. From safety concerns to methodological intricacies, this survey outlines the barriers that must be overcome to fully unlock the potential of this technology. This survey serves as a roadmap for advancing research in microwave brain stimulation, pointing out potential directions and innovations that promise to reshape the field.


Assuntos
Micro-Ondas , Doenças do Sistema Nervoso , Humanos , Técnicas Estereotáxicas , Tecnologia , Encéfalo/fisiologia
16.
Childs Nerv Syst ; 40(5): 1501-1506, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38240787

RESUMO

OBJECTIVE: To describe the rare complication of cerebral pseudoaneurysm formation following stereotactic electroencephalography (sEEG) lead implantation in children. METHODS: A retrospective chart review of all pediatric patients undergoing sEEG procedures between 2015 and 2020 was performed. Cases of pseudoaneurysm were identified and reviewed. RESULTS: Cerebral pseudoaneurysms were identified in two of 58 total cases and 610 implanted electrodes. One lesion was detected 1 year after sEEG explantation and required craniotomy and clipping. The other was detected 3 months post-explantation and underwent coil embolization. Neither patient had any neurologic deficits associated with the pseudoaneurysm before or after treatment. CONCLUSIONS: Pseudoaneurysm formation post-sEEG explantation is rare and likely underreported. Routine, post-explantation/treatment imaging is warranted to detect this rare but potentially lethal complication.


Assuntos
Falso Aneurisma , Humanos , Criança , Estudos Retrospectivos , Eletroencefalografia/métodos , Técnicas Estereotáxicas , Imageamento Tridimensional , Eletrodos Implantados
17.
Epilepsia ; 65(3): 641-650, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265418

RESUMO

OBJECTIVE: Stereo-electroencephalography (SEEG) is the preferred method for intracranial localization of the seizure-onset zone (SOZ) in drug-resistant focal epilepsy. Occasionally SEEG evaluation fails to confirm the pre-implantation hypothesis. This leads to a decision tree regarding whether the addition of SEEG electrodes (two-step SEEG - 2sSEEG) or placement of subdural electrodes (SDEs) after SEEG (SEEG2SDE) would help. There is a dearth of literature encompassing this scenario, and here we aimed to characterize outcomes following unplanned two-step intracranial EEG (iEEG). METHODS: All 225 adult SEEG cases over 8 years at our institution were reviewed to extract patient data and outcomes following a two-step evaluation. Three raters independently quantified benefits of additional intracranial electrodes. The relationship between two-step iEEG benefit and clinical outcome was then analyzed. RESULTS: Fourteen patients underwent 2sSEEG and nine underwent SEEG2SDE. In the former cohort, the second SEEG procedure was performed for these reasons-precise localization of the SOZ (36%); defining margins of eloquent cortex (21%); and broadening coverage in the setting of non-localizable seizure onsets (43% of cases). Sixty-four percent of 2sSEEG cases were consistently deemed beneficial (Light's κ = 0.80). 2sSEEG performed for the first two indications was much more beneficial than when onsets were not localizable (100% vs 17%, p = .02). In the SEEG2SDE cohort, SDEs identified the SOZ and enabled delineation of margins relative to eloquent cortex in all cases. SIGNIFICANCE: The two-step iEEG is useful if the initial evaluation is broadly concordant with the original electroclinical hypothesis, where it can clarify onset zones or delineate safe surgical margins; however, it provides minimal benefit when the implantation hypothesis is erroneous, and we recommend that 2sSEEG not be generally utilized in such cases. SDE implantation after SEEG minimizes the need for SDEs and is helpful in delineating surgical boundaries relative to ictal-onset zones and eloquent cortex.


Assuntos
Epilepsia Resistente a Medicamentos , Eletroencefalografia , Adulto , Humanos , Eletrodos Implantados , Eletroencefalografia/métodos , Eletrocorticografia/métodos , Técnicas Estereotáxicas , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/cirurgia , Convulsões/cirurgia , Estudos Retrospectivos
18.
Neurol Med Chir (Tokyo) ; 64(2): 71-86, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220166

RESUMO

The aim of this study was to systematically review and meta-analyze the efficiency and safety of using the Robotic Stereotactic Assistance (ROSA®) device (Zimmer Biomet; Warsaw, IN, USA) for stereoelectroencephalography (SEEG) electrode implantation in patients with drug-resistant epilepsy. Based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a literature search was carried out. Overall, 855 nonduplicate relevant articles were determined, and 15 of them were selected for analysis. The benefits of the ROSA® device use in terms of electrode placement accuracy, as well as operative time length, perioperative complications, and seizure outcomes, were evaluated. Studies that were included reported on a total of 11,257 SEEG electrode implantations. The limited number of comparative studies hindered the comprehensive evaluation of the electrode implantation accuracy. Compared with frame-based or navigation-assisted techniques, ROSA®-assisted SEEG electrode implantation provided significant benefits for reduction of both overall operative time (mean difference [MD], -63.45 min; 95% confidence interval [CI] from -88.73 to -38.17 min; P < 0.00001) and operative time per implanted electrode (MD, -8.79 min; 95% CI from -14.37 to -3.21 min; P = 0.002). No significant differences existed in perioperative complications and seizure outcomes after the application of the ROSA® device and other techniques for electrode implantation. To conclude, the available evidence shows that the ROSA® device is an effective and safe surgical tool for trajectory-guided SEEG electrode implantation in patients with drug-resistant epilepsy, offering benefits for saving operative time and neither increasing the risk of perioperative complications nor negatively impacting seizure outcomes.


Assuntos
Epilepsia Resistente a Medicamentos , Procedimentos Cirúrgicos Robóticos , Humanos , Procedimentos Cirúrgicos Robóticos/métodos , Eletroencefalografia/métodos , Técnicas Estereotáxicas , Epilepsia Resistente a Medicamentos/cirurgia , Convulsões , Eletrodos Implantados , Estudos Retrospectivos
19.
Turk Neurosurg ; 34(1): 128-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282591

RESUMO

AIM: To investigate the relationship between planned drill approach angle and angular deviation of the stereotactically placed intracranial electrode tips. MATERIAL AND METHODS: Stereotactic electrode implantation was performed in 13 patients with drug resistant epilepsy. A total of 136 electrodes were included in our analysis. Stereotactic targets were planned on pre-operative magnetic resonance imaging (MRI) scans and implantation was carried out using a Cosman-Roberts-Wells stereotactic frame with the Ad-Tech drill guide and electrodes. Post implant electrode angles in the axial, coronal, and sagittal planes were determined from post-operative computerized tomography (CT) scans and compared with planned angles using Bland-Altman plots and linear regression. RESULTS: Qualitative assessment of correlation plots between planned and actual angles demonstrated a linear relationship for axial, coronal, and sagittal planes, with no overt angular deflection for any magnitude of the planned angle. CONCLUSION: The accuracy of CRW frame-based electrode placement using the Ad-Tech drill guide and electrodes is not significantly affected by the magnitude of the planning angle. Based on our results, oblique electrode insertion is a safe and accurate procedure.


Assuntos
Epilepsia Resistente a Medicamentos , Técnicas Estereotáxicas , Humanos , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Imageamento Tridimensional , Eletrodos Implantados , Imageamento por Ressonância Magnética
20.
Curr Opin Neurol ; 37(1): 40-51, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37889571

RESUMO

PURPOSE OF REVIEW: Electrical stimulation of the peripheral and central vestibular system using noninvasive (galvanic vestibular stimulation, GVS) or invasive (intracranial electrical brain stimulation, iEBS) approaches have a long history of use in studying self-motion perception and balance control. The aim of this review is to summarize recent electrophysiological studies of the effects of GVS, and functional mapping of the central vestibular system using iEBS in awake patients. RECENT FINDINGS: The use of GVS has become increasingly common in the assessment and treatment of a wide range of clinical disorders including vestibulopathy and Parkinson's disease. The results of recent single unit recording studies have provided new insight into the neural mechanisms underlying GVS-evoked improvements in perceptual and motor responses. Furthermore, the application of iEBS in patients with epilepsy or during awake brain surgery has provided causal evidence of vestibular information processing in mostly the middle cingulate cortex, posterior insula, inferior parietal lobule, amygdala, precuneus, and superior temporal gyrus. SUMMARY: Recent studies have established that GVS evokes robust and parallel activation of both canal and otolith afferents that is significantly different from that evoked by natural head motion stimulation. Furthermore, there is evidence that GVS can induce beneficial neural plasticity in the central pathways of patients with vestibular loss. In addition, iEBS studies highlighted an underestimated contribution of areas in the medial part of the cerebral hemispheres to the cortical vestibular network.


Assuntos
Vestíbulo do Labirinto , Humanos , Lobo Temporal , Encéfalo , Técnicas Estereotáxicas , Estimulação Elétrica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...